
Comparative Performance Analysis of Vulkan Implementations of

Computational Applications

Maria Rafaela Gkeka Nikolaos Bellas Christos D. Antonopoulos

Department of Electrical and Computer Engineering

University of Thessaly, Volos, Greece

Email: {margkeka, nbellas, cda}@inf.uth.gr

ABSTRACT

The recent introduction of the Vulkan API and the SPIR-V

intermediate-level language by the Khronos Group provides a new

GPU programming model in an effort to combine the advantages

of its predecessors, OpenGL for 3D graphics and OpenCL for

computing. Vulkan’s low-level and more direct control over the

underlying GPU hardware as well as its support for explicit multi-

threaded execution offers opportunities for better performance at

the cost of higher programming effort.

Most of the previous work associated with Vulkan has targeted the

graphics pipeline. The fact that Vulkan also supports the compute

pipeline has motivated us to examine it from the GPGPU

perspective, by porting a number of realistic applications to a

desktop GPU and evaluating their Vulkan implementations in terms

of performance and programmability. Specifically, we consider the

Laplacian filter which is used in image processing to detect areas

of rapid change (edges) in images. Also, we consider a Visual

Odometry (VO) application used to track the position and pose of a

robot by analyzing a sequence of camera frames. VO is part of a

Simultaneous Localization and Mapping (SLAM) application used

in autonomous navigation systems to build a map of surrounding

environments and to determine the location of a moving robot

inside this map. These applications require advanced pixel-level

processing at different levels of pyramid-based granularity, and

may even require real-time performance (when, for example,

SLAM is used in a robot navigation system). We ported the original

implementations (written in C for Laplacian filter and in CUDA for

SLAM) to OpenCL, OpenGL and Vulkan and evaluated their

performance on a desktop NVIDIA GPGPU.

We show that Vulkan performance is comparable (within 10%)

with the performance attained by OpenCL and higher than the

performance attained by OpenGL compute shader

implementations. By exploiting Vulkan synchronization primitives

using the command buffer, we can eliminate the overhead of

launching multiple kernel invocations in iterative applications and

improve performance of Vulkan implementations by up to 30%.

However, the OpenCL compiler seems to be more mature than the

SPIR-V compiler used in Vulkan implementations resulting in

slightly faster OpenCL kernel execution.

On the other hand, the low-level semantics of Vulkan demand

higher programming effort compared with OpenCL/OpenGL

which can be a burden if Vulkan is to be used as a GPGPU

programming model. Most of the additional effort, however, is

boilerplate code that can be reused in more than one Vulkan

applications.

Our work is one of the first to consider Vulkan compute as an

implementation language for larger scale applications (and not just

for small kernels as in previous work).

ACM COPYRIGHT

Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party

components of this work

must be honored. For all other uses, contact the Owner/Author.

IWOCL'19, May 13–15, 2019, Boston, MA, USA

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6230-6/19/05.

https://doi.org/10.1145/3318170.3318174

mailto:%7d@inf.uth.gr

